Definition

A sequence (fn) of functions on ACIR to IR converges uniformly to f on A if for any $\varepsilon > 0$, there exists $N := N(\varepsilon_1)$ such that for any $N \ge N$ for any $X \in A$, $|f_n(x) - f(x)| < \varepsilon$.

Lemma

A sequence (fn) of functions on ACIR to IR closes not converges uniformly to f on A: f and only it there exists $\varepsilon_0 > 0$, a subsequence (fnk) of (fn) and a sequence (xk) in A such that $|f_{n_k}(x_k) - f_{n_k}(x_k)| > \varepsilon_0$ for any k.

Example 1. $f_n(x) = \frac{x}{n}$, A = [0, 1]. (fn) converges uniformly to o on [0,1]. Pf: Fix E>O. By AP, there exists some N such that the E. For any NZN, for any XELO, 1] |fn(x) - 0| = |7 | < 1 < N, Hence, (fn) converges unitormly to o Example 2. $f_n(x) = \frac{x}{n}$, A = IRto does not converge uniformly to any to on IR. Pf: Since (fn) converges pointwisely to 0 on IR, i.e. for any XEIR, face) ->0 as n>0. If (fn) converges uniformy to f on IR, then Take &== 1, nk=k, nk=k Then $|f_{n_k}(x_k) - 0| = |f_k(k)| = 1 > \frac{1}{2}$ Hence, (fn) does not converge uniformly to o

Example 3

 $f_{n(x)} = x^{n}$, A = [0, 1]

(fn) does not converge uniformly to any f on [0, 1].

Pf: Since for converges pointwisely to f where $f(x) = \begin{cases} 0, & 0 \le x < 1, \\ 1, & x = 1, \end{cases}$ it suffices to show

In does not converge unitermly to f on [0, i]

Let $\varepsilon_0 = \frac{1}{4}$, $\eta_k = k$, $\eta_k = (\frac{1}{2})^{\frac{1}{k}}$.

Then $|f_{n_k}(t_k) - f(t_k)| = |((t_k)^k - o)| = \frac{1}{z} > \frac{1}{q}$ Hence (f_n) does not converges uniformly to f on [0,1].

Example 4.

 $f_n(x) = x^n(1-x), A = [0, 1].$

(f) converges unistermly to o on [0, 1]

Pf: Fix $\xi > 0$.
There exists some NEW such that $(1-\xi)^N < \xi$.

For any $n \ge N$, for any $x \in (0, 1]$, if $x < 1-\xi$,

then $|f_n(x) - 0| \le \chi^n < (1-\xi)^N < \xi$.

If $x > 1-\xi$, then $|f_n(x) - 0| \le |1-\chi| < |1-(1-\xi)| = \xi$.

Hence, (f_n) converges uniformly to 0 on [0, 1].

Proposition

Let (fn), (gn) be sequences of bounded functions that converge uniformly to f, g on A. Then (fngn) converges uniformly to fg on A.

Pf: Steps 1:

I M such that Ifol, Igul, If1, Ig1 < m the any n.
Pf: Suppose |fol < Mon.

By Candry Criterion for uniform convergence, $\exists NEN \text{ c.t. for any } n \ge N, \text{ for any } x \in A,$ $\exists H_n(x) - f_v(x) | < 1 \text{ and } |f(x) - f_v(x)| < 1.$

By triangle inequality,

If(x), |f(x)| < 1+ MN for all N >N, XEA.

Let M = max | M, ..., MN-1, MN+1 |

Then |f(n), If(< M for any n.

The same for g.

Step 2:

Fix &>0.

Take NEA st. for any NEN, $x \in A$, $|f_n(x) - f(x)| < \frac{\varepsilon}{zm}$, $|g_n(x) - f(x)| < \frac{\varepsilon}{zm}$. Then

 $\begin{aligned} |f_{n}(x)g_{n}(x) - f(x)g(x)| &\leq |(f_{n}(x) - f(x))g_{n}(x) + f(x)(g_{n}(x) - g(x))| \\ &\leq |f_{n}(x) - f(x)|g_{n}(x) + |f(x)|g_{n}(x) - g(x)| \\ &\leq \frac{\varepsilon}{2m} \cdot M + M - \frac{\varepsilon}{2M} \\ &= \varepsilon \end{aligned}$

Hence, (figh) converges to fg unitormly on A.